46 research outputs found

    DIRAC Experiment and Test of Low-Energy QCD

    Get PDF
    The low-energy QCD predictions to be tested by the DIRAC experiment are revised. The experimental method, the setup characteristics and capabilities, along with first experimental results are reported. Preliminary analysis shows good detector performance: alignment error via Λ\Lambda mass measurement mΛ=1115.6MeV/c2m_\Lambda = 1115.6 MeV/c^2 with σ=0.92MeV/c2\sigma = 0.92 MeV/c^2, pπp \pi^- relative momentum resolution σQ2.7MeV/c\sigma_Q \approx 2.7 MeV/c, and evidence for $\pi^

    Measurement of inclusive π0\pi^{0} production in hadronic Z0Z^{0} decays

    Get PDF
    An analysis is presented of inclusive \pi^0 production in Z^0 decays measured with the DELPHI detector. At low energies, \pi^0 decays are reconstructed by \linebreak using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to x_p = 2 \cdot p_{\pi}/\sqrt{s} = 0.75) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for {q\overline q} and {b \bar b} events. The number of \pi^0's per hadronic Z^0 event is N(\pi^0)/ Z_{had}^0 = 9.2 \pm 0.2 \mbox{(stat)} \pm 1.0 \mbox{(syst)} and for {b \bar b}~events the number of \pi^0's is {\mathrm N(\pi^0)/ b \overline b} = 10.1 \pm 0.4 \mbox{(stat)} \pm 1.1 \mbox{(syst)} . The ratio of the number of \pi^0's in b \overline b events to hadronic Z^0 events is less affected by the systematic errors and is found to be 1.09 \pm 0.05 \pm 0.01. The measured \pi^0 cross sections are compared with the predictions of different parton shower models. For hadronic events, the peak position in the \mathrm \xi_p = \ln(1/x_p) distribution is \xi_p^{\star} = 3.90^{+0.24}_{-0.14}. The average number of \pi^0's from the decay of primary \mathrm B hadrons is found to be {\mathrm N} (B \rightarrow \pi^0 \, X)/\mbox{B hadron} = 2.78 \pm 0.15 \mbox{(stat)} \pm 0.60 \mbox{(syst)}

    First Measurement of the Strange Quark Asymmetry at the Z0Z^{0} Peak

    Get PDF

    LHCb inner tracker: Technical Design Report

    Get PDF

    LHCb calorimeters: Technical Design Report

    Get PDF

    LHCb magnet: Technical Design Report

    Get PDF

    LHCb RICH: Technical Design Report

    Get PDF

    Energy dependence of the differences between the quark and gluon jet fragmentation

    Get PDF
    Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is =1.241±0.015 (stat.)±0.025 (syst.). =1.241\pm 0.015\ (stat.) \pm 0.025\ (syst.). Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio R_{\gamma} of the charged particle flow in the q\overline{q} inter-jet region of the q\bar{q}g and q\bar{q}\gamma samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for \alpha_s(M_Z) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is \[ \alpha_s(M_Z)=0.116 \pm 0.003\ (stat.) \pm 0.009\ (syst.). \
    corecore